Methane emission measurement in a tropical rain forest

Year: 2007 Place of fieldwork: Malaysia Name: Ryoji Nakagawa

Key Words: Methane (CH4) emission, Tropical rain forest, Forest canopy, Global Warming, Greenhouse gases

Research background

Global warming is getting serious all over the world, and terrestrial ecosystems are expected as an important sink for greenhouse gases such as carbon dioxide (CO₂). Tropical rain forests are believed to play an important role in the sequestration of CO₂ and field studies often focus on its quantification. Although methane (CH₄) is the second greenhouse gas characterized by a larger greenhouse effect than CO₂, however, its dynamics in ecosystems have not yet been understood, and we cannot estimate whether a tropical rain forest is its source or sink. Filed observational studies regarding CH₄ exchange are strongly needed for the evaluation of this.

Objectives

Recently, it has been found that a plant emits CH_4 in an aerobic condition. Some studies are calculating CH4 balance in terrestrial ecosystems and suggest that forests may contribute to the emission of CH_4 and that tropical rain forests may be particularly an important source. If these calculations can be accepted, the emission of CH_4 may have an important influence on global warming. In this study, we focus on estimating the emission of CH_4 from plant foliage and a concentration of CH_4 in a forest canopy, and aim at evaluating the exchange of CH_4 between a tropical rain forest and the atmosphere.

Results

Our study was conducted at the Pasoh Forest Reserve in Peninsular Malaysia. The core area (650 ha) of the reserve is a primary lowland mixed dipterocarp forest, consisting of various species of *Shorea* and *Dipterocarpus*. The continuous canopy height was approximately 30 m. Our observation in December 2007 was carried out in a wet season and storms occurred almost everyday. We measured CH_4 emission from each leaf of 9 tree species by an incubation experiment using a chamber and an incubator. As a result, methane production was detected in almost every species. The emission rate was generally larger from leaves at the upper canopy layer than those at the lower.

Profile measurement for the CH_4 concentration was conducted at heights from 0.2 m to 53 m along our observation tower. Sample air was taken at each of 10 heights for about an hour and a half. The data for three days during our stay suggested that the concentration was not much different in each height and each sampling time, but a slight uptake was shown at the lower portion.

Plate2 : Canopy walkway at the height of 30 m.

Our experiment and observation demonstrated a tendency for the emission of CH_4 from the leaves of the forest, particularly at the upper canopy. This suggests that sunlight may be a trigger of CH_4 emission and that plant physiology may control the mechanism. From the result of the profile measurement, however, even if it was emitted with a constant rate, the rate was not enough large and we have not yet obtained clear evidence that our tropical rain forest was a CH_4 source.

Future plan

This was the first trial for measuring CH_4 emission in the Pasoh Forest Reserve. From our current result in a rainy season, it was still unclear whether our tropical rain forest contributed to CH_4 emission or uptake. Further development for the measurement method is also needed for the evaluation. Continuous field study will be necessary in a dry season in particular.

Plate3: Study tower