Spatial-Temporal Variabilities of Nitrous Oxide Emission from Acacia mangium Soils

Ryota Konda¹, Seiichi Ohta¹, Shigehiro Ishizuka²

¹Graduate School of Agriculture, Kyoto University ²Forestry and Forest Products Research Institute

We compared spatial structures of N₂O fluxes in an Acacia mangium plantation stand in Sumatra, Indonesia between dry (August) and wet (March) seasons. A 60×100 m plot was established in an A. mangium plantation that included different topographical elements of the upper plateau, slope and valley bottom. The plot was divided into $10 \times$ 10 m grids. The N₂O fluxes and soil properties were measured at 77 grid points of 10 m intervals in the plot. Spatial structure of the gas fluxes and soil properties were identified using geostatistical analysis. The means $(\pm SD)$ of N₂O fluxes in a wet season, 1.85 (\pm 1.18) mg N m⁻² d⁻¹, were significantly higher than that in a dry season, 0.55 (\pm 0.42) mg N m⁻² d⁻¹. This seasonal fluctuation of N₂O fluxes suggests that A. mangium soils function as a larger source of N₂O than natural forest soils on Sumatra. Spatial structure of N₂O fluxes in a wet season was considered to be mainly governed by that of water-filled pore space (WFPS), while that in a dry season seemed to be controlled by spatial patterns of soil resources distribution. In A. mangium stand soils, we suggest that the factors controlling spatial structure of N₂O fluxes are different between wet and dry season because of seasonal changes of both WFPS and fresh substrate supply into the soils.

Keywords: Acacia mangium, fast wood plantation, nitrous oxide, seasonal change, spatial structure